

GREASE

Today's Topic

- What's Grease?
- Changes in Grease & its Impact
- HPM's relevance to current Industry

- GC-LB & HPM Specifications
- Navigating HPM spec
- Q & A

What is in a grease? Hint – there are 3 things

Thickener Types

What is the most common thickener type?

What other thickener types can you name?

NLGI Grade

What does the NLGI grade indicate?

The NLGI ranges from 000 to 6. Which is the most viscous?

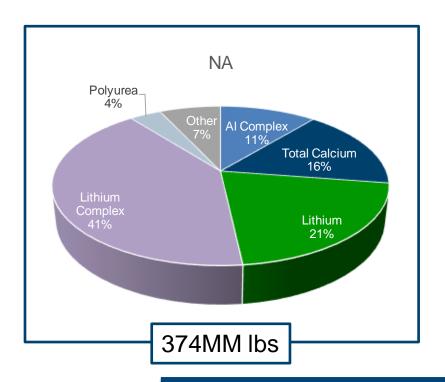
Grease Trends

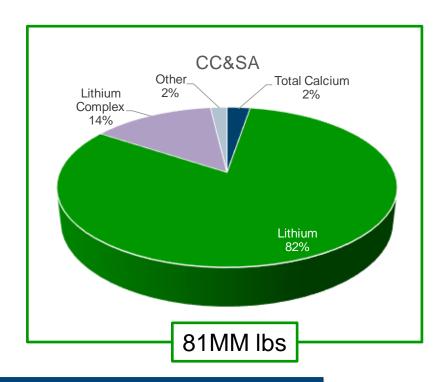
Sustainability and the Challenges to the Grease Industry

The Rise of Electric Vehicles

NLGI HPM Specification

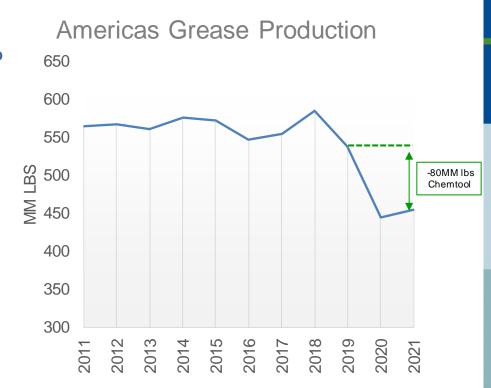
Lithium HSE Classification


Lithium Availability



Thickener Growth

Americas Grease Production by Thickener Type – 454.7 MM lbs in 2021


>60% of grease production in NA is Li based >95% of grease production in LA is Li based

Source: NLGI 2021 Grease Production Survey

Americas Grease Production

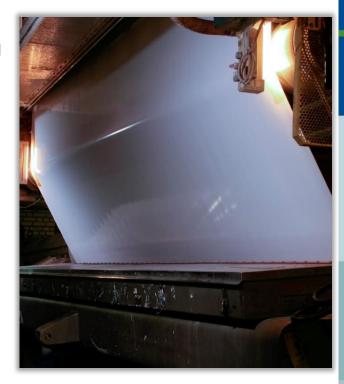
- Total global production in 2021 was 2.62 Billion lbs
- The Americas accounts for 17% of global grease production
 - ▲ Americas recovery post pandemic is slower due to loss of Chemtool
- Overall global production trend is flat
 - ▲ Li thickener market share down globally 3% since 2018
 - Some areas of thickener growth (calcium sulfonate, polyurea, Al complex)

Source: NLGI Grease Production Survey 2011-2021

Grease Trends

Raw material landscape changing

- ▲ Reduced Naphthenic availability & increased cost
- Reduced Group I production & less bright stock availability
- ▲ Lithium Increased competition with batteries driving growth in alternative thickeners


Growing need for higher performing greases

- Better equipment protection desired
- Increasingly harsh conditions
 - Higher temperatures and higher loads
- ▲ Reduce total cost of ownership
- ▲ Extended service interval/sealed for life
- Noise reduction

Growth in key application areas:

- Wind Energy
- Automotive electrification
- ▲ Mining and Agriculture
- ▲ Steel and paper mills

 AftonChemical.com

Impact of these trends on grease formulation

Raw material landscape changing

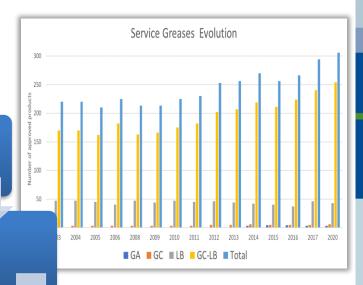
- Limited availability of bright stock drives focus onto alternatives such as OCP's or other polymers
- Lithium price increase helps bridge the gap between cost and performance driving the use of alternative thickeners (e.g. calcium sulphonate)

Growing need for higher performing greases

- More focus on thickener selection to gain performance improvements in sectors such as steel production
- Extended life refocuses on component chemistry for flexibility, plus better oxidation performance
- Noise reduction a major consideration in key sectors, such as wind & EV

Growth in key application areas

- Solutions for specific needs (e.g. fretting wear in wind turbines)
- Compatibility with seals & metallurgies (more testing)
- New specifications/standards & technology needed for auto electrification
- Next generation of specifications introduction (i.e. NLGI HPM)



NLGI Specifications - Historical Perspective

1966 – Initial discussions held to develop automotive service grease specification between NLGI, ASTM, SAE

1989 – Publication of ASTM D4950 "Standard Classification and Specification for Automotive Service Greases"; NLGI begins certification of greases against new "GC-LB" specification.

2015 – NLGI establishes WG to discuss upgrades to GC-LB specification.

2019 – NLGI decides to move forward with proposal for new set of specifications in parallel to existing automotive service specifications.

Specifications from NLGI - Dec 2020

GC-LB (ASTM D4950)

High-Performance Multiuse Specification (HPM)

HPM Core

Corrosion Resistance (CR) High-Load (HL) Water
Resistance
(WR)

Low-Temp (LT)

Media Release December 2, 2020

NLGI Launches High-Performance Multiuse (HPM) Grease Certification

Last year, NLGI began the advancement for a new High-Performance Multiuse (HPM) Grease Certification. Today, we're pleased to launch the HPM certification and sub-categories with enhanced performance in the following areas:

- HPM Core Spec
- HPM Grease Core with enhanced Water Resistance (HPM + WR)
- HPM Grease Core with enhanced Salt Water Corrosion Resistance (HPM + CR)
- HPM Grease Core with High Load Carrying Capacity (HPM + HL)
- HPM Grease Core with enhanced Low Temp Performance (HPM + LT)

High-Performance Multiuse (HPM) Grease Specifications

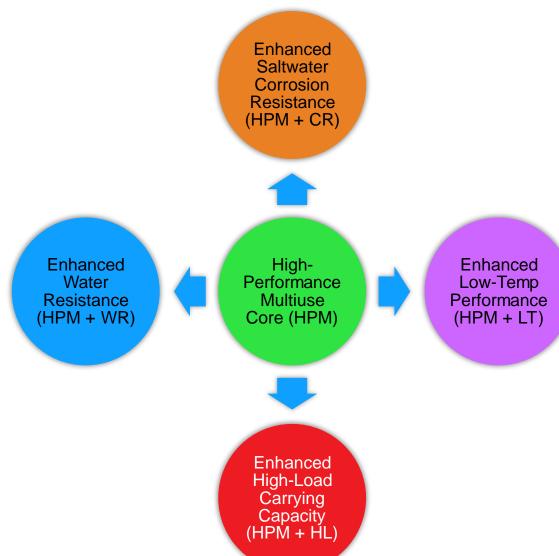
- Overall Goal: Define new grease specification categories with higher performance and broader utility for the market
 - ▲ Increase communication between end-user and grease marketer/manufacturer
 - ▲ Will **NOT** replace GC-LB
- Additional Goal: Define greases that meet core HPM specification <u>and</u> sub-categories with tests and limits for enhanced performance in the following areas:
 - ▲ Water Resistance (WR)
 - ▲ High-Load Carrying Capacity (HL)
 - ◆ Salt Water Corrosion Resistance (CR)
 - ▲ Low-Temperature Performance (LT)
 - → High-Temperature/Long Life (HT/LL?) [under discussion for future]
- Enhanced performance sub-categories must meet core HPM performance as well

High-Performance Multiuse (HPM) Grease Specifications

Development Strategy

- ▲ Build specifications based on grease's ability to perform under identified conditions
- ◆ Set performance limits to be challenging yet achievable
- Strengthen certification and audit process compared to GC-LB

Benefits


- ▲ Increased product quality with higher level of audit/certification testing
- ◆ Unified guidance based on performance of grease
- ▲ Educate end-users regarding grease capabilities

Performance-based specification:

- ▲ Performance is the key
- Does not specify type of thickener, base oil, additive, or other raw material

AftonChemical.com

HPM Specifications Overview

HPM Core Specifications

GC-LB (ASTM D4950)

High-Performance Multiuse Specification (HPM)

HPM Core Resistance

Corrosion

(CR)

High-Load (HL)

Water Resistance (WR)

Low-Temp (LT)

Test Name	Units	Method	HPM Core
Worked-60 Pen	dmm	D217	220 -340
Rust Prevention	rating	D1743	Pass
Emcor rust test (distilled water), max	rating	D6138	0,1
Four-Ball Wear, max	mm	D2266	0.60
Four-Ball Weld, min	kgf	D2596	250
Oxid. Stability, 100 hrs, 100 °C, max	ΔkPa (psi)	D942	35 (4.9)
Copper corrosion, 24 hours, 100 °C, max	rating	D4048	1b
NBR (ISO 13226), 168 hours at 125 °C	ΔHardness	D4289	-15 to +2
	Δ Vol %	D4289	-5 to +30
Prolonged worked penetration (Δ10k)	dmm	D217	+/- 30
Water Washout, % loss, max	wt.%	D1264	10
High-Temp Bleed (30 hrs, 100 °C), max	wt.%	D6184	7
Roll stability (2 hrs, RT)	dmm	D1831	+/-10%
Oil Separation (24 hrs @ 25 °C), % loss, max	wt.%	D1742	5
Low-Temp Torque Ball Bearing, -20 °C		D1478	
Starting torque, max	mNm(g·cm)		1000(10,200)
Running torque, max	mNm(g·cm)		100(1,020)

HPM + Corrosion Resistance (CR)

GC-LB (ASTM D4950)

High-Performance Multiuse Specification (HPM)

HPM Core

High-Load Corrosion (HL) Resistance

(CR)

Water Resistance (WR)

Low-Temp (LT)

Test Name	Units	Method	HPM Core	+ Corrosion Resistance (CR)	
Worked-60 Pen	dmm	D217	220 -340		
Rust Prevention	rating	D1743	Pass		
Bearing rust (10% SSW)	rating	D5969		Pass	
Emcor rust test (distilled water), max	rating	D6138	0,1		
Emcor rust (100% SSW), max	rating	D6138		1,2	
Emcor rust (0.5 N NaCl solution), max	rating	D6138		2,3	
Four-Ball Wear, max	mm	D2266	0.60		
Four-Ball Weld, min	kgf	D2596	250		
Oxid. Stability, 100 hrs, 100 °C, max	ΔkPa (psi)	D942	35 (4.9)		
Copper corrosion, 24 hours, 100 °C, max	rating	D4048	1b		
NBR (ISO 13226), 168 hours at 125 °C	ΔHardness	D4289	-15 to +2		
	Δ Vol %	D4289	-5 to +30		
Prolonged worked penetration (Δ10k)	dmm	D217	+/- 30		
Water Washout, % loss, max	wt.%	D1264	10		
High-Temp Bleed (30 hrs, 100 °C), max	wt.%	D6184	7		
Roll stability (2 hrs, RT)	dmm	D1831	+/-10%		
Oil Separation (24 hrs @ 25 °C), % loss, max	wt.%	D1742	5		
Low-Temp Torque Ball Bearing, -20 °C		D1478			
Starting torque, max	mNm(g·cm)		1000(10,200)		
Running torque, max	mNm(g·cm)		100(1,020)		

Corrosion Resistance (CR) Tests

- EMCOR Dynamic bearing corrosion (ASTM D 6138)
 - ▲ Bearings run for 8 hours, sit for 16 (3 cycles) then sit for 4 days
 - Distilled or salt water
 - ◆ Rate from 0 (no rust) to 5 (severe)
- Standard bearing corrosion (ASTM D1743 / D5969)
 - ▲ Bearing packed with grease, 48 hrs. at 52°C in humid atmosphere
 - ▲ Distilled or salt water
 - ▲ Evaluate for rust, run in triplicate

HPM + High-Load (HL)

GC-LB
(ASTM D4950)

High-Performance Multiuse Specification (HPM)

+ Corrosion Resistance (CR)

High-Load (HL)

(HL)

Water Resistance (WR)

Test Name	Units	Method	HPM Core	+ High-Load (HL)
Worked-60 Pen	dmm	D217	220 -340	
Rust Prevention	rating	D1743	Pass	
Emcor rust test (distilled water), max	rating	D6138	0,1	
Four-Ball Wear, max	mm	D2266	0.60	0.50
Four-Ball Weld, min	kgf	D2596	250	400
SRV step Load, (Procedure B at 80 °C), min	N	D5706		800
Fretting wear (weight loss), aver 2, max	mg	D4170		5
Fretting wear scar by SRV, max	mm	D7594		0.500
Oxid. Stability, 100 hrs, 100 °C, max	∆kPa (psi)	D942	35 (4.9)	
Copper corrosion, 24 hours, 100 °C, max	rating	D4048	1b	
NBR (ISO 13226), 168 hours at 125 °C	ΔHardness	D4289	-15 to +2	
	Δ Vol %	D4289	-5 to +30	
Prolonged worked penetration (Δ10k)	dmm	D217	+/- 30	
Water Washout, % loss, max	wt.%	D1264	10	
High-Temp Bleed (30 hrs, 100 °C), max	wt.%	D6184	7	
Roll stability (2 hrs, RT)	dmm	D1831	+/-10%	
Oil Separation (24 hrs @ 25 °C), % loss, max	wt.%	D1742	5	
Starting torque, max	mNm(g·cm)		1000(10,200)	
Running torque, max	mNm(g·cm)		100(1,020)	

High Load (HL) Tests

- 4 Ball Wear (ASTM D2266)
 - ↑ 1h/75°C/1200rpm/ 40 kg (typical)
 - ▲ Wearscar
- ▲ 4 Ball EP (ASTM D2596)
 - ▲ Run at increasing loads
 - ▲ Weldpoint in kg
- Fafnir Fretting Wear (ASTM D4170)
 - Arc of 12°, frequency of 30.0 Hz, load of 2450 N, for 22 h at RT
 - Weight loss, mg
- SRV (Optimol)
 - Ball-on-disc tests
 - ◆ Step load (ASTM D5706)
 - ◆ Fretting wear (ASTM D7594)

HPM + Water Resistance (WR)

High-Performance Multiuse Specification (HPM)

HPM Core

Corrosion High-Load Resistance (HL) (CR)

Water Resistance (WR)

Low-Temp (LT)

Test Name	Units	Method	HPM Core	+ Water Resistance (WR)	
Worked-60 Pen	dmm	D217	220 -340		
Rust Prevention	rating	D1743	Pass		
Emcor rust test (distilled water), max	rating	D6138	0,1		
Four-Ball Wear, max	mm	D2266	0.60		
Four-Ball Weld, min	kgf	D2596	250		
Oxid. Stability, 100 hrs, 100 °C, max	ΔkPa (psi)	D942	35 (4.9)		
Copper corrosion, 24 hours, 100 °C, max	rating	D4048	1b		
NBR (ISO 13226), 168 hours at 125 °C	ΔHardness	D4289	-15 to +2		
	Δ Vol %	D4289	-5 to +30		
Prolonged worked penetration (Δ10k)	dmm	D217	+/- 30		
Water Washout, % loss, max	wt.%	D1264	10	5	
Water spray off, max	wt.%	D4049		40	
Wet roll stability (pen change)	dmm	D8022		+/- 15%	
High-Temp Bleed (30 hrs, 100 °C), max	wt.%	D6184	7		
Roll stability (2 hrs, RT)	dmm	D1831	+/-10%		
Oil Separation (24 hrs @ 25 °C), % loss, max	wt.%	D1742	5		
Low-Temp Torque Ball Bearing, -20 °C		D1478			
Starting torque, max	mNm(g·cm)		1000(10,200)		
Running torque, max	mNm(g·cm)		100(1,020)		
Low-Temp Torque @ -40 °C, max	N-m	D4693			

Water Resistance (WR) Tests

- ◆ Ball bearing packed with grease and rotated at 600 r/min ± 30 r/min
- ▲ Measure the average of duplicate tests as the % wt. of grease washed out (60 min ± 1 min) at the test temperature

Water Spray Off (ASTM D4049)

- ◆ Grease is coated on a stainless steel panel and sprayed with water at the specified test temperature and pressure
- ▲ Measure of the resistance of the grease to water spray-off on the panel after 5 min ± 15 s to the nearest 1.0 %

✓ Wet roll stability (ASTM D8022)

- ◆ Grease sample is mixed with water sheared at 20 °C to 35 °C for a specified time in a roll stability apparatus
- ▲ Report the difference of the final cone penetration reading minus the initial penetration reading between the cone penetration before working and the cone penetration after
 ▲Afton

AftonChemical.com

HPM + Low-Temperature (LT)

GC-LB (ASTM D4950)

High-Performance Multiuse Specification (HPM)

HPM Core

Corrosion Resistance (CR)

High-Load (HL) Water Resistance (WR) Low-Temp (LT)

Test Name	Units	Method	HPM Core	+ Low-Temp (LT)
Worked-60 Pen	dmm	D217	220 -340	
Rust Prevention	rating	D1743	Pass	
Emcor rust test (distilled water), max	rating	D6138	0,1	
Four-Ball Wear, max	mm	D2266	0.60	
Four-Ball Weld, min	kgf	D2596	250	
Oxid. Stability, 100 hrs, 100 °C, max	∆kPa (psi)	D942	35 (4.9)	
Copper corrosion, 24 hours, 100 °C, max	rating	D4048	1b	
NBR (ISO 13226), 168 hours at 125 °C	ΔHardness	D4289	-15 to +2	
	Δ Vol %	D4289	-5 to +30	
Prolonged worked penetration (Δ10k)	dmm	D217	+/- 30	
Water Washout, % loss, max	wt.%	D1264	10	
High-Temp Bleed (30 hrs, 100 °C), max	wt.%	D6184	7	
Roll stability (2 hrs, RT)	dmm	D1831	+/-10%	
Oil Separation (24 hrs @ 25 °C), % loss, max	wt.%	D1742	5	
Low-Temp Torque Ball Bearing, -20 °C		D1478		
Starting torque, max	mNm(g·cm)		1000(10,200)	
Running torque, max	mNm(g·cm)		100(1,020)	
Low-Temp Torque Ball Bearing, -30 °C		D1478		
Starting torque, max	mNm (g·cm)			1000(10200)
Running torque, max	mNm (g·cm)			100(1020)
U. S. Steel Mobility, -20 °C, min	g/min	LT-37		10
Low-Temp Flow (Kesternich), -30 °C, max	mbar	DIN 51805-2		1400

Low-Temperature (LT) Tests

- Kesternich Low Temperature Flow properties (DIN 51805-2)
 - ◆ Sample is conditioned to agreed upon temp. For 2 hrs.
 - 0°C to -50°C
 - ◆ Pressure is increased at intervals of 30 sec until the gas escapes and the grease 'moves'
 - ▲ Temp. and pressure (hPa) are recorded
- U. S. Steel Mobility, LT-37
 - ▲ Limits > 10 g/min @-20°C (-4°F)
- - ◆ Pack bearing with sample, then lower to test temp. And hold for 2hrs.
 - ▲ Bearing starts slow rotation (1 rpm)
 - · Starting torque recorded
 - ▲ After 1 hour
 - Running torque recorded

NLGI GC-LB vs HPM Core

AftonChemical.com

GC-LE (ASTN D4950

High-Performance Multiuse Specification (HPM)

Corrosion Resistance (CR)

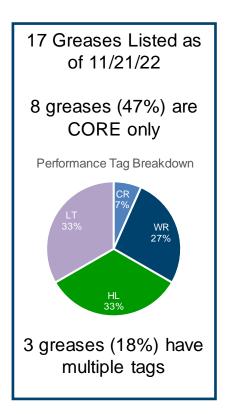
HPM Core

High-Load (HL) Water
Resistance
(WR)

Low-Temp (LT)

220 -340 Pass 0,1 0.60
Pass 0,1 0.60
0,1 0.60
0.60
250
35 (4.9)
1b
-15 to +2
-5 to +30
+/- 30
10
7
+/-10%
5
1000(10,200)
100(1,020)

Licensing/Trademark Logos with Tags


Combinations

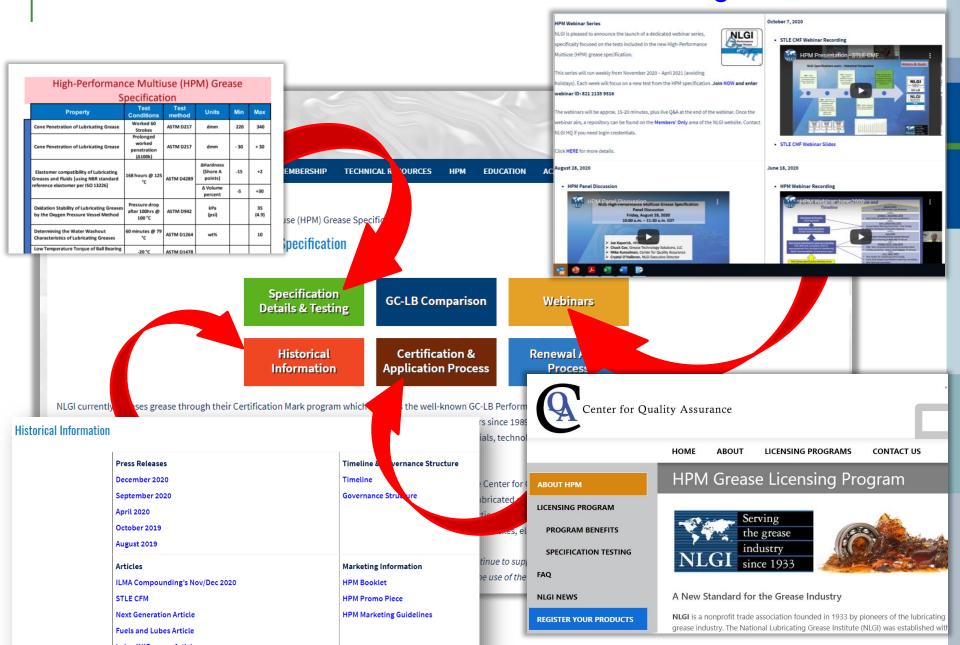
- Corrosion
 Resistance
- High Load
- Water Resistance
- Low Temperature
- Other Combinations Possible

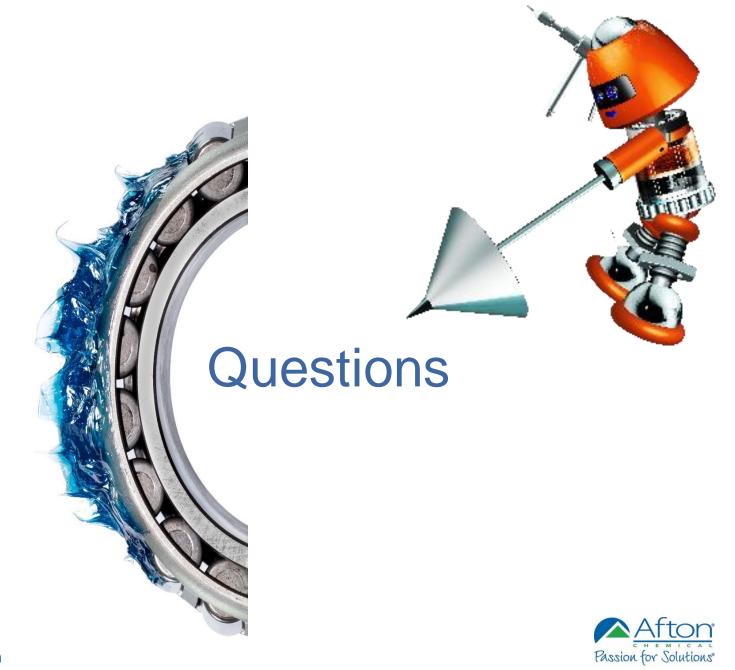
NLGI HPM Statistics – November 2022

Registered Branded Product	Supplier	CORE	Corrosion Resistance	Water Resistance	High Load	Low Temperature
Acinol 152 HQS (US) – All Colors	Axel Americas	CORE+		+WR		+LT
Axellence 652 HQ (US) – All Colors	Axel Americas	CORE+				+LT
Castrol Molub-Alloy 860/460-1 ES	BP Lubricants USA, Inc.	CORE				
Castrol Tribol™ GR SW 460-1	BP Lubricants USA, Inc.	CORE+	+CR		+HL	+LT
Gadus® S3 V220C 2	Shell	CORE+			+HL	
GLEITMO 680 XT	FUCHS Lubricants Co.	CORE				
LML Lithium Complex Grease	Loadmaster Lubricants, LLC	CORE+		+WR		
Mobilgrease XHP™ 222	ExxonMobil Oil Corporation	CORE+		+WR		
MOLYKOTE® Multilub Synthetic High Performance Grease	Molykote Specialty Lubricants	CORE+				+LT
Peerless™ LLG	Petro-Canada Lubricants, an HF Sinclair Brand	CORE				
Peerless™ OG2 Red	Petro-Canada Lubricants, an HF Sinclair Brand	CORE				
RENOLIT CXS BGR	FUCHS Lubricants Co.	CORE+			+HL	+LT
RENOLIT CXS CRM 1	FUCHS Lubricants Co.	CORE				
RENOLIT LX 2	FUCHS Lubricants Co.	CORE				
STABYL LX 460 SYN	FUCHS Lubricants Co.	CORE+			+HL	
Valvoline™ Cerulean Plus #2	Valvoline, Inc.	CORE		+WR	+HL	
Valvoline™ Extreme Red	Valvoline, Inc.	CORE				

HPM Specification - Implementation

- The website is now live and accepting applications
 - www.CenterforQA.com/hpm-about
- CQA will collect samples and carry out testing as part of certification and audit program


FIVE STEP CERTIFICATION PROCESS


for Grease Manufacturers and Marketers

- Submit Application for Sample Approval & Branded Product Registration
 - Manufacturers include product data
 - Rebrands submit Supplier Affidavit
- 2. Submit Qualification Sample
- 3. Submit the signed License Agreement
- 4. Submit Payment
- Submit additional Branded Grease Product names

More information on HPM at www.NLGI.org

